


Bell Aerospace LIZA]]

TABLF, OF CONTFNTS

PAGE |
|
3 THREE-DIMENSTIONAL FLOW MODEL COORDINATE TRANSFORMATION . . . . . . . I-=1 E
I.A Introduction . . . ol SPP AN . T A L I-1 %
I.B Details of the Coordlnate Transformatlon Sl Ty et St r il Lo I-1
e TMET FELT TNTEERATTONS M HEDSE i i o il e e e e e e IR
IT.A Inbroduction . . N I1-1
IT.B Advantages and Dlsadvantages of Implicit Integratlon
Methods . . . A T AR A [ T |
II.C Tmplicit Integratlon Method Used in the Study S e S
ITI. THE COMOC PROGRAM: BOUNDARY LAYER AND PARABOLIC NAVIER-STOKES . . . .
R B R S S e R R v Rl nl o R T e AL
Fii.A Introduction . . . S e e a0 a I11-1
ITII.B Blasius Boundary Laver by Flnite leferences N e SR S I11-1
IIT.C Blasius Boundary Layer by Finite Elements . . . . . . . . . . I11-3
IIT.D Laser Cavity Mixing Demonstration Case . . . . . . . . . . . . III-5
IV. SIMPLE ONE-DIMENSIONAL UNSTEADY PROBLEMS. . . ¢« ¢ ¢ ¢ ¢ v v ¢ « « « . IVl
V.8 Introduction . - I P A e -1
IV.B Coupled Sound and Heat Flow ) e 1. 1
IV.C Burger's Equation . . . B -5
IV.C.1 Application of the on" leferen01ng Scheme to
Burger's Equation . . . . iww o V=D
IV.C.2 Results of Numerical Tests with Burger S Equation @ Wty Iv-10
V. ONE~DIMENSTONAL; UNSTEADY GAS FLOW « & « « & = s o w o » 5 & « « & s = - Vel
L 10, SN 'y 8 15,0 1) (nwniln 7 QR I S A A o e T S S R |
: V. Govelnilng BuabIons. o o w v v v v o6 w6 6w v e o e e e =]
| V.C Steady Gas Flow Problems . . . oo% w o Va3
. V.D Hyperbolic Unsteady One-Dimensional Gas Flow Problems ¢ o x x4 YB
V.E Parabolic Unsteady One-Dimensional Gas Flow Problems . . . . . . V=10
Vs HECOMVEBNDATREONS + o 55 55 o o % @ am v & o-% = ® & 5 & o v w5 oo - dae
VikE. BRERERENCES,: « & @ 6 v + % o o o & » o 6 o % 5 % % o s % v & % n @ % w  Viled
o




Bell Aerospace L1241/,

FIGURE NO.

A+ wlx)

(O8]

un
.

O SR Wi Ch

LIST OF ILLUSTRATIONS

Variable Geometry Transformation in the y Direction

Finite Element Discretization for Two-Dimensional Problems .

Bell Aerospace Textron Three-Dimensional Axisymmetric
Nozzle for Low Pressure Laser Cavity Applications

Computational DOmMaIr o o & & v v 5 @ s e s v ow e e
Finite Element Discretization

Variation of Optical Path Length Across 3D Mixing Zone .
Staggered Grid . &
T-Profiles for Burgers Equation (B = 10—u, ot I

u-Profiles for Supersonic-Subsonic Unsteady Viscous Flow .

u-Profiles for Supersonic-Subsonic Unsteady Viscous Flow
with Uniform Heat Addition .

Nonuniform Heat Addition Distribution
Rankine-Hugoniot Curve for Heat Addition .

u-Profiles for Chapman-Jouguet Detonation

u-Profiles and Steady State Tbmperature for Chapman—Jouguet

Deflagration . . . . . :

u-Profiles for Strong Deflagration .

-iii~

I-2

ITT-3

I11-6
ITI-10
ITI-11
ITI-12
V-2
TVv-14

V-14

V-16
V-17
v-18

v-21




Bell Aerospace 12 41t{¢],]

IT. IMPLICIT INTEGRATION METHODS

A. Introduction

One of the principal objectives of this study is to examine the advantages
of implicit methods for integrating large systems of ordinary differential
equations arising from the spatial discretization (by finite differences or
finite elements) of the partial differential equations governing two major
classes of fluid dynamics problems:

1) steady boundary layer and parabolic Navier-Stokes problems in two and
three dimensions (3D)

i1) unsteady gas flow in one dimension

B. Advantages and Disadvantages of Implicit Integration Methods

At Bell Aerospace Textron problems of type (i) have been solved for a number
of years using the COMOC continuum mechanics program (Baker and Zelazny [ 1 ])
which employs triangular finite elements for the spatial discretization, and uses
an explicit method with an extended region of absolute stability for the intepra-
tion of the resulting ordinary differential system. (This integration is performed
in the direction of the streamwise coordinate, which has a time-like character.)
See Nigro [ 2] for the development of this explicit method. In spite of the
improved stability of this method (in comparison to conventional explicit methods),
the inherent stiffness of the differential systems arising in many applications
(especially when strong diffusive effects are present) severely restricts the
step-size of such explicit methods. This is to say nothing of problems involving

inite rate chemistry which must be tackled in future 3D laser simulations at Bell.
The high chemical reaction rates make such problems several orders of magnitude
stiffer than those involving only diffusive processes. Consequently, it is
imperative that explicit methods be replaced by implicit methods, which have far
better absolute stability properties.

For the second class of problems (ii) it is traditional to use explicit
integration methods since the partial differential system for many applications
is hyperbolic (i.e., there are no diffusive effects), which means that the
ordinary differential system resulting from spatial discretization is not stiff
and can be solved efficiently by explicit techniques. However, if diffusive
effects (e.g., viscosity, heat conduction) and/or finite rate chemistry are present,
the resulting ordinary differential system is stiff, and explicit methods are no
longer appropriate. Examples of such problems involving viscosity and heat
conduction are given later in this report.

In addition to their improved absolute stability properties, there is a
further advantage in going to implicit methods. Consider the following general
form of the system of ordinary differential equations (ODE's) arising from the
spatial discretization of the system of partial differential equations (PDE's)
under consideration:
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Here the "dot" denotes the time derivative (or, in the case of boundary layer and
parabolic Navier-Stokes problems, the derivative in the direction of the spatial
coordinate having time-like character). A is an N by N matrix, which may depend
on t and the dependent variables, y: (but not on §1). Note that A is not required
to be non-singular. (In fact, the %—matrix is singular for a number of examples
discussed later in this report.) Now in order to use an explicit method to
integrate (2.1), it is first necessary to solve for the derivative vector. If

A is singular, it will be difficult or impossible to do this. For A non-singular
this requires the solution of an Nth order matrix equation. (For the purposes

of this report, the solution of a matrix equation will be thought of as a
factorization of the A-matrix followed by a back substitution based on the factors
of A and the particular RHS vector.) Excluding the special case where A is
constant and can therefore be factored once and for all, it is necessary to
re-factor A every time a fresh derivative evaluation is required by the particular
explicit method. This factorization is an expensive process unless A is of some
speclial form which allows for very efficient factorization. Of course, the
preferred form is a diagonal A, and most spatial differencing schemes used in
conjunction with explicit methcds yield a diagonal A-matrix. This requirement of
a diagonal A-matrix is a restriction which makes it more difficult to obtain high
order accuracy in the spatial discretization, especially for non-uniform meshes.
For example, with finite element discretizations, the A-matrix is naturally non-
diagonal. To obtain a diagonal matrix multiplying the derivative vector, a process
vopularly known as "lumping'" has often been used. Lumping consists of replacing
the A-matrix with a dlagonal matrix, each element of which is the sum of the
elements in the corresponding row of the A-matrix. For the simplest elements having
linear shape functions, this procedure alters the approximate solution somewhat
but does not lower the order of the approximation. (The COMOC program, which

uses linear shape functions over trilangular elements, employs lumping so that the
explicit method mentioned previously can be used.) However, for higher order
elements lumping reduces the order of accuracy and should not be used. See Strang
and Fix [ 3] for a discussion of lumping.




Bell Aerospace 2,415/,

I1-3

If it is decided to use a spatial differencing scheme yielding a non-diagonal
A-matrix, then an explicit method will require the same order of magnitude of
computation per step (principally the time consuming factorization of A) as an
implicit method, and so, inrespective of any stability considerations, there is
no advantage in using an explicit method. In fact, the implicit methods that
are used in this study, Hindmarsh [ 4 ], do not require a refactorization of the
A-matrix at every step, and therefore require even less computation per step
(on an average) than explicit methods.

7 Implicit Integration Method Usec¢ in the Study

There are a number of implici¢ integration methods with good absolute stability
rroperties which could be selected. The best known of these are the backward
Euler method, the trapezoidal method, and the method of Curtiss and Hirschfelder
[ 5]. The backward Euler is a first order method while the other two are second
order. Instead of selecting only one such method, a better strategy would be to
use a family of implicit methods, each one being of different order, and using the
particular member of the family that would allow the largest possible step
consistent with the accuracy requirements for the problem being treated.
Fortunately, subroutine packages which do exactly this are readily available.

The first widely available package of this sort is due to Gear [6 ]. (Two of

the methods in this package are the backward Euler and that of Curtiss and Hirsch-
felder.) Later other packages, all based on the methods of Gear were developed

at the Lawrence Radiation Laboratory by Hindmarsh and his colleagues. The
particular package used in this study is known as GEARIB [ 4 ]. It is designed to
treat ordinary differential systems for which the A-matrix is non-diagonal, banded,
ard possibly even singular. Like all the packages based on that of Gear, GEARIB
automatically varies the integration step size and order so that the integration
can be carried out as efficiently as possible subject to the user supplied accuracy
requirement.

When using implicit methods for ordinary differential systems which are non-
linear (the case for practically all of the examples of this report), it is
necessary to solve a large system (of size N, the number of dependent variables)
of nonlinear algebraic equations at each step. This is not as bad as it seems,
since a good starting guess for the solution of these nonlinear equations is
available from the prediction (using an explicit predictor) from the preceding
step. Usually, only one or two iterations using Newton's method are reaquired to
home in on the solution. The apparent drawback is that for Newton's method the
N by N Jacobian matrix of the nonlinear algebraic system must be formed and
factored for each iteration. However, since the dependent variables of the problem
change smoothly (usually) the elements of this Jacoblan do not change rapidly and
it 1s usually unnecessary to form and factor this Jacobian for every iteration.

In fact GEARIB is set up to re-evaluate and factor the Jacobian only when the
iterative solution to the nonlinear system is converging too slowly. Typically,
this is every 10 integration steps or so. The convergence of this modified Newton's
method (sometimes referred to as a quasi-Newton method) is somewhat slower than

the true Newton method. However, the great reduction in Jacobian formations and
factorizations more than compensates for the lower convergence rate.
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ITI. THE COMOC PROGRAM: BOUNDARY LAYER AND PARABOLIC NAVIER-STOKES PROBLEMS

Introduction

In this section, numerical results for a variety of nonlinear parabolic
problems solved by:

i) COMOC with the original explicit integration method
ii) COMOC with the new implicit integration method (GEARIB)

are compared, especially with regard to efficiency.

B Blasius Boundary Layer by Finite Differences

Before using GEARIB in conjunction with the finite element spatial
discretization (COMOC) of the Blasius boundary layer equations, it was decided
to test GEARIB with a more conventional finite difference spatial discretization
of these equations. These solutions will be useful for later comparison with
the corresponding COMOC results.

The Blasius equations for incompressible boundary layer flow are:

| _ v

3% - T3y (3.1a)
u 92 = SN 99 + 93}‘_1_ = gp. (3 lb)

9X oy 3y2 dx -

Here x and y are the streamwise and transverse coordinates, respectively, and u

and v are the corresponding velocity components. dp/dx is the prescribed pressure
gradient. Upon discretizing (3.1) in the transverse direction by finite differences,
the following differential system results:

[~ ) ’
o S S v;\ —vl/H \\

. 2
0 u; 0 0 00 Uy —Vlu2/2H + (u2 - 2u1)/H - dp/dx
0.50.500 Vs ~(vy=v) )M
00 0u, 00 i\ [ vatuy - up/en ¢ uy - 2u, 4 u) )/ - dp/dx
a0, (6 LS 0 P v3 —(v3 - v2)/H

. 2
00 00 O ug us —v3(uu - ug)/EH + (uu - 2u3 + u2)/HL - dp/dx




Bell Aerospace L12.41{°),

I1I-2

Here the dots above the ujy and vy on the left denote derivatives with regard to x.
H is the uniform mesh size. The mesh starts at the wall with mesh point O.
However, since uy and vy vanish on the wall they do not appear in (3.1). The
even numbered rows correspond to the second order finite difference representation

f (3.1b) written at the mesh points. The odd numbered rows represent the
continuity equation (3.1a) written at the center of each mesh interval to second
order accuracy. The last mesh point, yy, is chosen to lie well into the free
stream where the velocity uy is known; for the Blasius problem uy = 1. vy is
unknown. Thus, there are (N-1) values of us and N values of vy to be determined
at each integration step making (2N-1) unknowns altogether. Because (3.la) was
written at the center of each mesh interval and (3.1b) at each interior mesh
point, there are also (2N-1) equations in system (3.2).

Note that (3.2) is not in normal form. Tt cannot even be put in normal form,
the odd columns are zero. This was no impediment to the implicit integration
package, GEARIB. It integrated (3.2) as it stands completely satisfactorily.
Various test runs were made using anywhere from 12 to 50 mesh points over the
y=-interval [0,1]. The numerical sclutions were compared to the "exact" solution
presented in Schlichting [ 7 ], p. 120 ff. The error behaved as expected with the
different mesh sizes. (Practically all the error was due to the finite difference
discretization in thﬁ y-dlrectlon The error per step criterion, e, for GEARIB
was chosen to be 10~ or 10-° , which meant that the integration of system (3.2)
was quite accurate.) Equatlon (3.2) was generalized to unequal mesh sizes and by %
a judicious mesh selection (about three times as fine near y = 0 relative toy = 1)
further improvements were obtained for a given number of mesh points. It is
interesting that the errors in the v: were generally an order of magnitude greater
than those for the uy. This condition continued to be true for the finite element
solutions discussed in the next subsection.

For the numerical tests, dp/dx was set to zero in (3.2) consistent with the
Blasius problem. However, a non-zero pressure gradient would introduce no
additional complication. The integration began at x = 1 and contirued to x = 2.
By x = 2, the boundary layer had grown enough that further integration would have
meant nonuniform conditions would be obtained near y = 1, inconsistent with the
boundary layer assumptions. Integration beyond x = 2 would have required a mesh
extending over a larger range of y.

To obtain initial values for uy, the tabulated "exact" solution of Schlichting
was fitted with a cubic spline, which was then used to obtain interpolated values
at the points of our finite difference mesh. The same thing was done for the vy.
However, these initial values for the vy were less satisfactory (from the stand-
point of starting the integration) than those obtained by the followine method:
Ruf@rring to (5.2), 1t can be seen that there are two equations for &-, two for
u?, etc. Having selected the Uy, the v should be selected so that these pairs of
equations are consistent. It is a simp}e matter to set up equatioms corresponding
to this requirement. These equations are almost trivially solved ior the v4 in
succession. With the ujy and vy so chosen, it would be possible to solve for the
initial us, which could be useful for the initial prediction by GEARIB. However,
for simplicity the initial u1 and vy were set to zero. The integration got started
satisfactorily inspite of the poor prediction based on these arbitrarily chosen

derivatives.
~— 2'."'._ ~ _J
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(G Blasius Boundary Layer by Finite Elements

The boundary layer option in the COMOC computer propram has been designed

for three-dimensional boundary problems. Transverse planes normal to the direction
of the main flow are subdivided into triangular elements. The variables of the !
problem are expressed in terms of the nodal values of these variables assuming a i
linear variation of the particular variable over the triangular element. Thus, ?
a two-dimensional problem must be solved as a three-dimensional problem if COMN
is to be used. In doing this the simplest possible finite element erid is used
which is illustrated in Figure 3.1. To preserve the two-dimensionality of rthe

y
9 10
7 8
5 5 |
3 y
e Z
1 2

Figure 3.1 Finite Element Discretization for Two-Dimensional Problems

problem, zero gradient boundary conditions are imposed on the z = constant faces
of this grid. The boundary conditions on the y = constant faces are the same as
in the finite difference case. Because this finite element grid requires two
colums of nodes, there will be twice as many problem unknowns, uy and vy, as for
finite differences for the same fineness of discretization.

Before discussing numerical results from COMOC, one other significant difference
between the finite difference approach shown in equation (5.2) and the finite
element approach of COMOC should be noted. In COMOC, when solving the system of
PDE's (3.1), only the discretized forms of the x-momentum equation are regarded as
ordinary differential equations to be solved by marching methods. The discretized
forms of the continuity equation are considered to be algebraic constraints to
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which the marching integration must be subjected. (No such distinction is made
between momentum and continuity in the finite difference formulation (5.2).)

The COMOC solution process goes as follows: For given initial conditions on
uji and vy, the discretized forms of the x-momentum equation are advanced one
step by the explicit integration method built into COMOC. If this step is deemed
successful by the internal error control mechanism, then v; 1is updated based on |
the finite difference equation, j

iy (dui 9 dui+l>

Y TN T T \E T &

(3.3)

where Hi is the y mesh spacing and dui/dx is approximated by a finite difference
formula involving the old and new values of uj. Now vy = 0, so (3.3) can be
used to obtain the vy in succession. After the v4 are so updated, the next step

is begun.

Now this procedure for dealing with the continuity eauation has been
successful in many computations using COMOC. Initially our feeling was that this
approach may be suitable when an explicit integration method is being used to
advance the ujy. However, we were doubtful whether it would be appropriate when
an implicit method, which often takes much larger integration steps, was being
used. Nevertheless, for the first numerical work using COMOC modified to include
GEARIB (instead of the old explicit method), it was decided to continue with this
approach, but expecting to have to switch to a fully implicit treatment of
continuity later.

For the basic Blasius test case, the finite element grid was based on 24
equally spaced intervals in the y-direction (see Figure 3.1). The initial
conditions were chosen as in the finite difference solution. This problem was
first solved with the unmodified COMOC (explicit integration). Although the
problem was solved with an accuracy comparable to that of the finite difference
approach, the CPU time to obtain this solution was rather large. The principal
difficulty was that after the step size had built up to a certain point (after
starting from a very small initial step), the error control mechanism in COMOC
decided, based on the smoothness of the solution trajectories of the uy, that a
larger step size, h, could be used and still maintain the desired accuracy.
Unfortunately, this error control mechanism has no means of reckoning with the
conditional stability of the explicit method. The result was that after a few
steps with this increased h, some of the rapid transients inherent in the
differential system were spuriously excited because the step size fell outside
the absolute stability limits of the explicit method. The error control mechanism
then interpreted these growing transients as a legitimate part of the solution
trajectories and cut back the step size in order to stay within the integration
error bounds. After a few steps with this reduced h, the spurious transients
would disappear. Again, the step size would be increased, and the whole cycle
would get repeated. Although a good deal of CPU time was wasted with these
erroneous step size changes, the CPU time would have been large even if the error

DT

T I e TR
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control mechanism had been able to keep the step size within the absolute
stability limits of the explicit integration method. The reason is because this
explicit method, despite its extended range of absolute stability, is still
relatively restricted in its maximum step size.

On the other hand, when GEARIB replaced the explicit method in COMOC, the
step size was limited only by accuracy requirements and not by stability
considerations (since the GEARIB methods are implicit). In integrating from
x =1 to x = 2, the modified version of COMOC ran about five times as fast as the
original version. This 1s somewhat misleading since the ratio of step sizes at
X = 2 was about 40:1 in favor of the GEARIB version. If the integration had
proceeded further, this ratio would have increased.

A variety of other discretization mesh sizes and integration accuracy
criteria were tried. 1In all cases, the implicit method behaved as expected.
However, in a number of these tests, the explicit method failed (usually by
attempting step sizes too large for stability) and by the time this instability
was detected it was too late to recover.

Despite the large integration step sizes possible with the implicit method,
there was no evidence that the explicit treatment of the continuitv eauation in
COMOC (discussed following equation (3.3)) resulted in any undesirable etffects.
However, there are some modifications of this explicit treatment that can result
in modest increases in accuracy. One is that the updated value of &i obtained
in the course of an integration step by GEARIB can be used in formula (3.3)
instead of a backward difference approximation to dus/dx. This improves the
accuracy somewhat at no additional expense. The other modification is that vy
can be updated from (3.3) after each prediction and correction by GEARIB, instead
of just after a successful step. Again this results in better accuracy but at
the expense of more CPU time (typically 25% more time).

Because the numerical results were satisfactory with this explicit treatment
of the continuity equation, no attempt was made to modify COMOC for a fully
implicit treatment of the governing equations (as was done in the previous section
with the finite difference formulation). However, it would not be surprising
to find that for more complicated boundary layer problems, e.g., three-dimensional,
compressible, chemically reacting, such a fully implicit treatment would be
desirable or even necessary. As discussed in the preceding subsection, GEARIB
is designed to handle such implicit differential algebraic systems. COMOC could
be modified to provide for fully implicit treatment of continuity, but at the
expense of a significant amount of reprogramming.

Laser Cavity Mixing Demonstration Case

Striations in the laser cavity density field developing downstream of a laser
nozzle array, Figure 3.2, have the potential of introducing optical path differences
which will degrade laser beam quality, Gross and Bott [ 8 ]. Of specific interest is
the region near the nozzle from the nozzle face to approximately four centimeters
downstream. Here mixing, and reaction is taking place between the cavity fuel

—
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(hydrogen) injected through the secondary (annular) nozzles and the oxidizer
(fluorine) provided in the combustor and injected into the laser cavity bv the
orimary nozzles. The starting conditions reauired at the nozzle exit/cavity
entrance plane are obtained using the CNCDE code described by Driscoll [9 ].
Table 3.1 gives the velocities, temperatures, pressures, and mass fractions used
in this demonstration case.

The change in optical path length is given by the expression

dx = o(B/p,)ds (3.4)
where
B = Gladstone-Dale constant
o = the reference density at STP
p = 1local density
ds = distance through the active media
dA = change in wave length due to variations in local density
Then
L
s ip(g_) ds (3.5)
o mix

Table 3.2 gives values of B/p_ for various gases of interest. The local value of
B/pO of a mixture is computed in terms of the local mass fractions Yy using

B B
(=) =} Y. (=) (3.6)
Po mix i - po i

Figure 3.3 shows a schematic of the computational domain analyzed and the
finite element discretization field. The boundary conditions used in the
computation required that mass, momentum, and energy diffusion across each
boundary was zero. Seventy finite elements were used with forty-six node points
and solution time on the IBM 360/65 computer was 2000 seconds for calculations

over the range 0 < x < 3.08 cm.

Applying equation (3.6) to the computed density field along three distinct paths
produced the optical path differences shown in Figure 3.4. To be noted is that in all cases
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Table 3.1 COMOC Starting Conditions

Primary

Velocity (ft/sec) 6380.
Temperature (°K) 4e8.
Static Pressure (torr) 6.58
Yy 0.339
YDF 0.518
YHe 0.143
ps 0

5
Note: Yi = mass fraction of specie i

Secondary
10660.
316.
6.58

0
0
0

g0
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Table 3.2 Gladstone Dale Constants

Specie B/OO
(cm3/gr)

F 0.01425
F2 0.13409
He 0.21538
HF 0.16370
H2 1. 71077

0.26110
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the maximum optical path difference which can be associated with striations induced
by nonuniform mixing is less than A/50. However, the variation in densities
induced by variations in static pressure in both the lateral and longitudinal
directions have the potential of inducing variations in optical path length in
excess of \/50. Lankford and Rapagnani [10] have observed transverse pressure
variations in excess of a factor of two (17 torr to 34 torr) which exist downstream
of the laser nozzle plane. Including this transverse pressure gradient influence
in the three-dimensional model was beyond the scope of the current investigation.
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IV. Simple One-Dimensional Unsteady Problems

A.  Infroduction

In this section two simple unsteady problems are discussed in detail and
nunmerical results are presented. The first, coupled sound-heat flow, is linear
and parabolic. The second, Burgers equation, is nonlinear and parabolic, although
by appropriate specialization of the parameters of this partial differential
equation, it can be reduced to the linear diffusion equation (parabolic) or a
nonlinear traveling wave problem (hyperbolic). For some of these cases, there are
exact solutions with which the numerical results can be compared. The spatial
liscretization used for these problems is carefully explained as is the
application of GEARIB to solve the resulting ordinary differential systems.

B Coupled Sound and Heat Flow

The first unsteady problem attempted was a linear parabolic problem, that of
coupled sound and heat flow, which is discussed in detail on p. 264 f.f. of
Richtmyer and Morton [11]. Further, there are exact solutions avallable (depending
on initial and boundary conditions), which are convenient for assessing the accuracy
of the numerical solution. After linearization, the governing partial differential
equations are:

£
de _ 3e u
5—{’_ = ' ..._?. - Y (ﬂ.]a)
X
g o B0 )
ot < X G
Mo 0w e gy 28
é’{ = (13 5% — L(Y 1) BX (u‘lc)

(4.1a) is the energy equation, (4.1b) is the continuity equation, and (4.1c) is
the momentum equation. Here the dependent variable u 1s the velocity and is
assumed to be small since sound waves are being considered. e 1is e€/c where €
represents a small perturbation of the internal energy from an ambient state €4,
and ¢ is a constant scallng factor equal to the i1sothermal sound speed of the
ambient state. w is cV/Vy where V is a small perturbation of the specific volume
from the ambient value V.. In (4.1), vy is the usual gas constant and ¢ = K/paCys
where k is the thermal conductivity, p, is the ambient density, and ¢, is the
specific heat at constant volume.

For the numerical tests, the interval of interest was 0 < x < 1, and the
boundary conditions were

u(0) = u(l) = 3=
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For a perfect gas e is directly proportional to the temperature, which means that
the conditions on e are equivalent to no heat conduction out of the region of

interest. The spatial discretization used was based on the uniform staggered grid

illustrated in Figure 4.1

x=0 x=1
e B e b gy il S
i v - 2 o 1 n " 1 -'1 i 1 1 il
e u (= u
0 1 £ - S T -1 Wa S W &N+
"1 Ya w3 Un-1 LY

Figure 4.1. Staggered Grid

For convenience, we have introduced fictitious quantities e, and eyy;, which will
be eliminated shortly by means of boundary conditions. Now discretizing in the
obvious way we obtain the ordinary differential system:

e 2

1 o(e2 = 2e1 + eo)/H - c(u1 - uo)/H \\
Wy c(u1 - uo)/H

U4y c(w2 - Wl)/H - C(Y—l)(82 - el)/H

7 2 .

e, o(e3 - 28, + e))/H” - clu, - u))/H

&P efuy - ul)/H

U, c(wy, = wy)/H = c(y-1)(e, - e,)/H

£ g P A P (4.2)
% oley - 2oy + ey I/ = eluy,y - uy )M

-1 cluy_y = Uy_p)/H

Uy C(WN - WN—l)/H - c(y—l)(eN - eN_l)/H

. )

: . - 2 - = -

°N L e R S ULl et B

v } \c(uN - uN—l)/H /
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Note that u, and &N do not appear in the derivative vector since they are required
to be zero Dby the boundary conditions. By the same token it 1is understood that
u, and u,, are replaced by zero on the RHS of (4.2). The boundary conditions on e

age apprgximated by ey = e and e = ey Using these to eliminate eO and el

il N+1
from the RHS of (4.2), we have a system of (3N-1) ordinary differential equations.
Of course, to complete the problem, we must specify initial conditions for the (3N-1)
dependent variables.

In performing the spatial discretization to obtain this ordinary differential
system, all of the partial differential equations and boundary conditions were
replaced by finite difference approximations of second order accuracy. Consequently,
the difference between the solution to (4.2) and the solution to (4.1) (evaluated
at the mesh points) can be expected to be O(HZ). Now 1f a nonuniform mesh were
desired, it would not be possible to generalize (4.2) to such a mesh and still
maintain 2nd order accuracy. Alternatively, one might try a conventional nonuniform
mesh for which all the nodal variables with the same subscript (uy, wy, e;) all
correspond to the same spatial point. By replacing all first and second ~derivatives
with respect to x by appropriate difference quotients, a second order approximation
would be obtained. However, in such a scheme, approximations to first derivatives
would involve three consecutive nodal values. This is not objectionable if there
is also second derivative term present in the same equation. However, if there are
no second derivatives present, as in (4.1b) and (l4.1c), this procedure is perilous
and will probably result in an ordinary differential system with spurious growing
solutions. This phenomenon was discussed in the preceding section in connection
with appropriate spatial discretization of the Blasius boundary layer equations.
Fortunately, there is another finite difference scheme which could be used on (4.1)
and which is quite conveniient for nonuniform meshes. It is sometimes referred to
as the "box" method (Keller [12]). This differencing method is illustrated in
Section IV.C.1. It has not been used on (4.1) but there would be no difficulty in
doing so.

For the test cases, the constants ¢, ¢, and y were set to 1., 1., and 1.4,
respectively. With these values for the constants, an exact solution to (4.1) is:

e(t) cos2mx
w(t) A .01008cos2mx
et -.06268s1in2mx

e-39.08t

=

COS2TX
+ ~-.8050cos2mx (Azcos6.312t + A
-6.252s1n27x

Jsin6.312¢)e™ 1969t

(8
+ 6.2U49cos2mx (-A231n6.312t + A
-1.005sin2mx

3cos6.312t)e-'196Qt

(4.3)

S ea———————
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In (4.3) Al’ A2, and A3 are arbitrary constants. Another exact solution can be

obtained by reversing the roles of sin2mx and cos2mx and reversing the sign of the
last element in each of the braces on the RHS. However, the one displayed in
(4=3) 1s the one of interest since 1t satisfies the boundary conditions,
ge Je

u(0) = u(l) = 5 il -

x=0 x=1
to be incorporated into the finite difference spatial discretization. For the
test problem, we chose A1 =0 A2 = A3 = 0. With this choice of the Ags (4.3)

was then evaluated (with t = 0) at the mesh points of the finite difference grid
o get the initial conditions for the ordinary differential system (4.2). GEARIB
was then used to integrate (4.2) with the accuracy parameter, €, set to

= 0, which, as noted earlier, are the ones

(@)Y

10 7, which is adequately small considering the accuracy of the spatial
discretization. Two different spatial mesh sizes were used, H = 1/30 and H = 1/60.
llow with A, = A3 = 0 in (4.3), the exact solution is a rapidly decaying exponential
in time. “Thus,; after a short time the solution of (4.2) should be very small.

The extent to which it 1s not 1s a measure of the error. Comparing this error

for the two different mesh sizes, it was found that the error for H = 1/60 was
about 1/U4 of that for H = 1/30, exactly what theory would predict. Further, the
errors themselves behaved very much like the two terms containing A2 and A3 on the
right of (4.3). The reason for this is that the initial condition “for (4.2) which
would excite only a rapidly decaying exponential solution (the finite difference
counterpart of the first term on the right of (4.3)), is not exactly cos2mwx
evaluated at the mesh points. Because this "non-exact" initial condition was used,
small amounts of the finite difference counterparts of the 2nd and 3rd terms on

the right of (4.3) were excited, and these components die out rather slowly.
(Possibly the initial condition excited small components corresponding to higher
spatial harmonics, e.g., cosdmx, but these were not present in noticeable amounts.)

Because of the smoothness of the solution, GEARIB integrated most of the way
with a Uth and 5th order method, with the stepsize gradually increasing as the
slowly decaying component became smaller.

We note that Richtmyer and Morton [11 ] have developed a combined implicit-
explicit method for the numerical solution of (4.1) ((4.1a) is treated implicitly
because of the diffusion term). Although much better than a purely explicit method,
there is still a stability limitation, i.e., At must be less than a certain
involved function of Ax, ¢, and o. At the end (t = 2.5) of the numerical example
iiscussed above, the At being used by GFARIB exceeded the maximum allowed by
Richtmyer and Morton's method by a factor of about 4.5. If the integration had
proceeded further or if a larger value of ¢ had been used, GEARIB would compare
even more favorably. On the other hand, for solutions that decay less rapidly
the advantage of GEARIB would be less clear. For example, the initial condition

e(x) = cos2Tx, u(x) = w(x) = 0 (4.4

which does not appear to be much different than that of the preceding discussion,
exclited very significant components of the finite difference counterparts of the

SR v T—— . —
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2rd and 3rd terms of (4.3). Consequently, the solution decayed slowly. At t = 2.5,
for example, the integration step size, At, was less than 1/10 of that of the
example discussed earlier, and At was well within the Richtmyer-Morton limit.

~

Burger's Eguation

For the initial tests of GEARIB used in conjunction with the "Box" scheme
for spatially discretizing PDE's, Burgers equation,

2
of _ g 9T _ .pdT
= = BE5 4P (4.5)

at 9%

was chosen. This is a favorite PDE to test numerical schemes with since by

varying the relative magnitudes of the constants 8 and y either the diffusive
effect or the nonlinear wave effect can be emphasized. Setting v to zero ylelds
the one-dimensional diffusion equation.) Swartz and Wendroff [13] and Sincovec
and Madsen [14] have tested their numerical methods on (4.5). The latter reference
also contains an exact solution, which was taken from Cole [15]. Cole also
discusses different physical interpretations of the dependent variable T of (4.5).
Perhaps, the most relevant interpretation for the present study is that of a
simplified model of a traveling structured shock where T is to be regarded as a
"generalized velocity."

C.1 Application of the "Box" Differencing Scheme to Burger's Equation

In this section, we discuss the applicatlon of the box differencing scheme
to Burger's equation. (The term "box" was used by Isaacson [16] and later Keller
[12]. Their use of this term is more specific than we are using it. They require
that the marching scheme in time be the trapezoidal rule, whereas we allow it to
be chosen automatically by GEARIB from a class of backward difference formulas.)
We also give a detalled discusslon of certain precautions required in the selection
of initial conditions. Most of these ideas extend to the more complicated PDE's
to be discussed later in this report.

To use the Box scheme, it is necessary to express (4.5) as a system of first

order (in x) ODE's. Tirst introduce

= OF
vz o (4.6)

Then (4.5) can be replaced by,

O - g . I,
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o T
ff = a3 —5-)—( (M.?b)

The boundary conditions are assumed to be separated but otherwise quite general,
i.e.,

gl(Tl’vl’t) = 0, gN(TN’VM’t) = 0, (4. B)
where g. and g,, are arbitrary functions continuous in t, and the subscripts 1 and

I refer to the left and right boundaries.

Ylow assume a finite difference mesh with nodes at x X : with T

vid v, associated with x4, and Hy= (X - Then Pe%lacfrg % {)va finlt%
iifferences in the abvious wav we get t%e Loilow1ng differential algebraic svstem:
[~ = :
OO0 80 o & (4;1 \\ gl(Tl,vl,t)
«5 @ 25 9@ 01 B(v2 - Vl)/H1 - y(v T t v, T )/2
000 00 T2 (v1 + V2)/2 - (T2 Tl)/Hl
00.50.5 v, BUv3 = V,)/H, = Y(V,T, + v;T5)/2
000 0O %3 (v? + VS)/2 = (T3 - Tg)/H2
]
Tn-1
.50.50] Jv e .
o ‘N-1 BV = Vo1 Me — YOy Ty + VT2
000 0Ty (g + w72 = (Ty = Ty )My
: 000 O \VN \SN(TN,VN,t)
L -

(4.9)

Jlote that the matrix multiplying the derivative vector is singular, so it is in
seneral not possible to solve for these derivatives. (In fact, the coefficients
& the v, are all zero.) Consequently, (4.9) could not be solved as it stands
1sing conventional integration routines.

For typlcal problems, gy would be a simple function, e.g., ] - f(t), where
f(t) is a prescribed function of time, often constant. (Similarly, for gy-) In

such cases, '['.l (TW) could be eliminated from (4.9) entirely, thus reducing the
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4 order of the system by 2. For generality, we choose not to do this. In later
sections, examples are glven using complicated nonlinear functions for g1 and gN.

To complete the specification of the problem governed by (4.9) initial
conditions must be supplied. From the physical problem values of Ty at t=0 would
be known, but the initial v{ may not be given. Now it may well be that the vy
are never actually of interest, but are to be regarded only as convenient auxiliary
variables. In thls case, the question of how to set the initial v4 arises. In
crinciple, they could be set arbitrarily. Thils can be seen as follows: In GEARIB
the starting method is the backward Euler method, i.e., (4.9) is written at
(to + h) replacing Ty by (Ty(to + h) - Ty(ty))/h, and similarly with vy. (Here
t, is the initial time and h is the time step.) (4.9) has become a system of 2N
nonlinear equations for the 2N unknowns, Ty(ty + h), vi(t, + h), ..., Ty(ty + h),
5W(tn + h). The solution of this system depends on the initial values of the Ty
by v%rtue of the backward difference formula used to approximate T4. However, as
noted earlier, the ¥; do not actually appear in (4.9). Consequently, the solution

f the nonlinear sys%em does not depend on the initial vy.

In practice, hocwever, since this nonlinear system is going to be solved by a
quasi-Newton method, it is desirable to start this iterative process from a "point"
(in the 2N-space (Tl,vl,...,TN,vN)) which is not too much different from the
solution. Now since the Ty change continuously in time from thelr initial values
and since the initial step size h 1s small, it is reasonable to use the initial Ty
for N of the starting point coordinates. (Actually, even better values of Ty are
obtained by using an explicit prediction from the initlal T3, but this requires
a knowledge of the initlal Ty, which may not be avallable. More on this later.)
To select the initial vy, observe that after the first step, the 3rd, 5th, ...,
(N-1)th equations, which are strictly algebraic, will be satisfied exactly (to
within the convergence criterion of the quasi-Newton method). Since the Ts don't
‘hange very much over the first short step, a reasonable requirement is that the
initial vy satisfy these algebraic equations initially. Since these equations
are linear, it may be a simple matter to do this, i.e.,

(4.10)

|
=)
1
=
N
=
1
&

[f v, or v, are prescribed, (4.10) provides a unique solution for the v,. If

both vy Y and vy are assigned, (4.10) 1s overdetermined and there is "no

solutlion unless t%e Ti satisfy a certain compatibility condition. This restriction
is easily obtalned by adding the algebraic equations of (4.9) (after multiplying
each equation by its respective Hy):

y T. = i \ 2 b
T, = Ty Z Hy_q(vy_q + vy)/e (h11)

 Tre—
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At first it might seem contradictory to require such a condition on the Ti' which
ought to be prescribable arbitrarily. However, 1t 1s unreasonable to choose an
initial profile for T which is not consistent (or nearly so) with the prescribed
values of vy and vy (which approximate 3T/3x at xq and xy). Such an inconsistent
T profile 1s tantamount to changing the boundary conditions discontinuously at e
(from boundary conditions consistent with the initial T profile to those actually
prescribed). For such problems, Ty and Ty would undergo large changes during the
first step, so that (4.11) would be satisfled after the first step. In this
situation, it 1is not clear how the initial vy should be set, but it may not matter
much since Ty and Ty (and probably other Ty) change so violently. We exclude such
vathological problems from further consideration.

If both T and Ty are prescribed boundary conditions then there 1is one degree
of freedom in the solution for the initial v4 from (4.10). To set this degree of
freedom we refer back to system (4.9). Since T and Ty are prescribed, T and Ty
are known (possibly functions of time). With Tq known, To can be obtained directly
from the 2nd equation of (4.9) in terms of elements of the RHS (which depend on
the one degree of freedom in the solution for the initial vy). Likewise, T3 can
be obtained from the 4th equation in terms of T, and the RH%. This process_can be
continued to the (N-3)rd equation, which yields an expression for T,.. But T, is
already known. Thus, the remaining degree of freedom in the solution for the vy
is chosen to make these two expressions for ’I‘J consistent. What if this degree of
freedom is chosen differently? For the momen%, assume that the initial integration
step, h, is small enough so that the Ty(ty, + h) and v4(t, + h) are not too much
different than their initial values. Replacing the time derivatives by backward
differences we can approximately solve for T,(t. + h) from the 2nd equation,

T3(t, + h) from the Uth, etc. Finally, the (N-3)rd equation glves an expression
for Ty(t, + h), which is already known from the boundary condition. If the initial
conditions for the v{ were chosen as discussed above, then these two expressions
for Ty(t, + h) will be nearly consistent. These two equations (and in fact the
whole system of 2N equations) can be made consistent by a slight readjustment of
the v, (which is done automatically by the Newton iterations). However, if the
Initial vy were not chosen as described above, then the vq(ty + h) will undergo a
violent readjustment in order that a solution to the system of 2N equations be
possible.

<

In the preceding paragraphs, we have discussed the choice of initial conditions
when the boundary condition function g of (4.9) involved only T; or vy (and
similarly with gw). The criterion used was that the initial conditions should be
chosen so that none of the Ty or vy change drastically during the first step, since
this could jeopardize the convergence of Newton's method for Ty(ty + h) and v4(t, + h).
For more complicated boundary condition functlons, g and gy, such a compatibility
[ analysis is 1likely to become more involved. Further, more complicated systems of

vartial differential equations, which are examined later in this report, compound
such analyses. It would be nice if a foolproof automatic method of starting the
ntegration were available. However, this is probably asking too much. For example,
onsider the extreme case where the system to be solved was purely algebralc, i.e.,
the derivative matrix analogous to that of (4.9) contained only zeroes. In order
that the solution variables change in time (1ike those of a differential system)
there would have to be at least one time dependent function or coefficlent embedded
in the algebralc system. (Such problems are readily treated using GEARIB.) If
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initial conditions satisfying the algebraic equations at tg were unknown, they
would have to be obtained by an iterative scheme, e.g., Newton's method (assuming
that the algebraic system is nonlinear). Since there is no known foolproof method
for solving a nonlinear system starting from an arbitrary initial guess, it is not
possible to make the starting process automatic for arbitrary differential-
algebraic systems. About the best that can be done is to choose the initial
‘onditions as reasonably as possible (in lieu of a complete analysis of a type
described earlier in this section) and to use a good iterative method. In the
ase of (4.9) this might be:

1) Choose the v, to satisfy (4.10).

i
11) If there is still a degree of freedom left in this solution, fix it
in some reasonable manner, e.g., by computing a 3-point forward
difference approximation to 9T/9x|. __ and setting v, to thls value,
il
which is the additlonal condition needed to make the initial vy unique.

111) Use a strict Newton method (instead of the less reliable, but more
efficient quasi-Newton method employed in GEARIB) for the first step.

Once the GEARIB integration is underway, the first phase of advancing the
solution from the current time t, to (t, + h) 1s to use an explicit prediction
(based on the derivatives at t,) to approximate the dependent variables at (tp + h),
which is then used as a starting point for the quasi-Newton iteration for the
solution at (£ + h). This approach almost always reduces the number of quasi-
Newton iterations for convergence. The same thing could be done for the first
step, providing the initial derivatives can be computed. If the derivative matrix
on the left of (4.9) were non-singular, then GEARIB contains an option for solving
for these initial derivatives. Unfortunately, as noted earlier, this matrix is
clearly singpular. However, if the algebraic equations are differentiated and
moved to the LHS of (4.9), the matrix may or may not be singular. If T and vy
(or v1 and Tv) are prescribed, then the modified matrix is non-singular and the
initial derivatives can be obtalned by GEARIB. However, if Ty and Ty or vy and
vy are prescribed, this matrix is singular. There is a solution for the initial
derivatives only 1f the initlal T4 and vy are compatible, as discussed earlier
in this section. If they are compatible, it is necessary that the user supply a
special subroutine which computes these 1nitial derivatives. In most of the cases
run, it was unnecessary to do this. The initial derivatives were arbitrarily set
(usually to zero) in the user supplied subroutine, and if the initial step was
relatively small, the quasi-Newton method would usually converge inspite of the bad
prediction (based on the arbitrarily chosen initial derivatives). Unfortunately,
in those cases where it 1s difficult to solve for the initial derivatives (because
of a singular derivative matrix - even after differentiation of the algebralc
equations), the Newton matrix becomes singular as h*0. For these cases, there must
be some compromise on the initial h. Tt must be small enough so that a bad
prediction (based on incorrect initial derivatives) will not jeopardize convergence
of the Newton (or quasi-Newton) iteration. On the other hand, if the initial h is
too small, the factorization of the Newton matrix will be inaccurate and the Newton
fteration may fall to converge for that reason. Generally, the selection of a
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suitable initial h was not a problem, but it could have been if the computations
had been performed in single precision.

In the preceding paragraph, we cited an advantage of basing the integration
on a purely differential system (obtained by differentiating all algebraic
wquatioms) instead of using the original differential-algebraic system (4.9).
disadvantage might seem to be the extra work required of the user to put the
);‘te" in the modified form (by analytically differentiating the algebraic equations).
s may or may not be true depending on the folilowing considerations: To use
Z:aﬂon s method in conjunction with GEARIB, it 1s necessary to form the Jacobian
matrix corresponding to the right hand side vector of (4.9). GEARIB provides two
vtions for doing this. In the first option the user obtains analytical formulas
“or the elements of Jacobian and codes these formulas into a user supplied
subroutine. In the second option, GEARIB computes these elements using numerical
“Terencing techniques. The second option is more convenient for the user, but
sually requires somewhat more CPU time, and sometimes the error introduced by
the numerical differencing affects the Integration adversely in that convergence
of the Newton iteration 1s slower, which results in a further increase of CPU
time. This 1s especially true if high accuracy is demanded of the Integration.
[f the analytical Jacobian option 1s to be used, then differentiating the algebrailc
equations does not increase the analytical work on the part of the user, since the
algebraic equations disappear from the RHS thus reducing the complexity of the .
formulas for the Jacobian of the RHS, but this reduction in work is compensated for .
by the Increased complexity of the matrix multiplying the derivative vector on the
left. If the numerical Jacobian option 1s used, then differentiating the algebraic
quations does result in extra analytical work by the user.

There is another advantage in using the differential-algebraic form. By
differentiating algebraic equations, Information is lost in a sense. This effect
was actually seen 1in numerical experiments in which the same problem was solved
using both the differential-algebraic and the purely differential systems. The
former almost always gave somewhat more accurate answers.

C.2 Results of Numerical Tests with Burger's Equation

For simplicity, the first numerical tests of the Box method were carried out
on the diffusion equation (obtained from (4.5) by setting y to zero). For these
tests (and all tests with the full Burger's equation), the x interval was [0,1]
which was subdivided into 40 equally spaced intervals. Recall that the discretized
Burger's equation (4.9) was written for nonuniform meshes, and such meshes could
have been used in our tests with very little extra effort, had it been warranted.

In the first test with the diffusion equafion the boundary conditions were
dT/3% = 0 at both ends, or, equivalently, Vi = 0. The initial condition for
the Ty was taken from cosmx evaluated at fh@ mos% points The initlal v4 were then
omputed from (4.10) starting with vq = 0. vy was not computed using (4.10), which
rrobably would have yielded a small non-zero value for vy. Instead, the initial
vi; was set to 0, 1ts prescribed boundary value. This slight inconsistency did not
cause any starting problems and the integration proceeded as expected, using 3rd
and Uth order methods most of the way and giving good apreement with the exact
solution, which is:
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2
Tx.5) = & tcosnx, (4.12)

and v(x,t) being the x-derivative of T(x,t). (B = 1 for all tests with the
diffusion equation.)

i For the second set of tests with the diffusion equation, the boundary
conditions were T; = 1, Ty = 0. The initial condition for the Ty was taken from
s S
Pl = .5[1 + cos(m(x-c)/L)], ¢ < x < (1-c) (4.13)
0, x > (1-c)

The constant ¢ must satisfy 0 < ¢ < 1/2 and L = 1-2c. An exact solution to the
continuous problem can be obtained by Fourier series methods:

o —Mﬂ2n2t
T(x,t) = (1-x) + } a sin(2mx)e r (4.14a)
=1
where
& _99§_<§1f£2192_. (4.14b)
1 o m(4n“L-1)

If L =1/2n for some n, (4.14b) 1s an indeterminate form and must be evaluated
differently. In our examples we avoid this case. For the first example, c=0.

Now since y=0, (4.9) 1s linear, which in turn means that the algebralc system
resulting from (4.9) (after replacing the time derivatives by backward difference
approximations) is also linear. Thus, Newton's method will converge in only one
iteration on the first step regardless of the initial choice of v4 and the initial
values of vy and Ty used for the prediction. (This is not necessarily true on
subsequent steps since the integration step size, h, upon which the Newton matrix
depends, can be changed by GEARIB without a corresponding change in the Newton
matrix and its factors, i.e., the quasi-Newton method.)

The principal difficulty with this problem is that v underpoes very rapid

‘4,1l4a) with respect to x and t, 1.e.,

2 o 3 —Ungngt
! - a (2m)’cos(2mx)e (4.15)

=1

‘hanges for small values of t near x=c¢ and x=1-c. This can be seen by differentiating
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Now substitute t=0, x=c, and (4.14b) for an:

; —cosz(2wnc)(2nn)3’ (4.16)

v(c,0) =
n=1 nn(bneLg—l)

which does not converge, i.e., v(c,0) is singular in the continuous problem, and
we can expect very rapid changes in the corresponding value of vy in the
1iscretized problem. Now rapid changes in the vy are not in and of themselves
harmful since vy does not appear in the differentlal-algebraic system (4.9).
However, because of the design of GEARIB (which has no provision for detecting
the absence of the derivative of a particular dependent variable) such rapid
*hanges 1n the vy can exert a strong influence on the progress of the integration.
This can be seen as follows:

Once the Newton iteration converges (in the course of advancing the solution
to the next time point), GEARIB estimates the error committed for each dependent
variable during the step. This error is due to the replacement of the time
derivatives in the original system by backward difference formulas. For example,
the method used for the first two steps (and possibly more) 1s the backward Euler.
According to theory, the error committed during one step in Ty, say, using the

backward Euler is O(hgfi). %1 is estimated by GEARIB as [Ti(to + h) - Ti(to)]/h,

where T, (ty + h) = [Ty(t, + h) - Ty(t5)1/h, 1.e., just the backward difference
approximation of the backward Euler method. (Ti(t ) 1s just the value of the
initial derivative supplied by the user or computed automatically by GEARIB if the
derivative matrix is non-singular.) Since GFARIB is "unaware" of the missing vy,
the same error estimates will be computed for each of the v4{. A large change in vy
(from v4(t,) to v4(t, + h)) for one or more values of i may result in an error
estimate by GEARI% which violates the user supplied accuracy requirement.
Consequently, the step size, h, will be reduced and the step retried until the
accuracy criterion is satisfied. To avert this spurious reduction in h resulting
from rapld changes in some of the vy, GEARIB was modified so that vy would not be
included in the error test.

From the preceding discussion, it 1s seen that even when the vy error test
1s suppressed there may _still be trouble with the error test on the first step
if incorrect values of Ty(t,) are supplied. (Because of the linearity of the
problem currently under discussion, the prediction has no bearing on the
convergence of Newton's method and these initial derivatives are irrelevant from
this standpoint.) Unless the values of Ti(ty) are correct (see discussion in the
following paragraph) then GEARIB should be modified so that the error test on the
Ty 1is suppressed for the first step. 1In this situation, it is up to the user to
choose a conservatively small initial h so as not to incur an excessive error on
the first step.

[n our numerical experiments, two different starting techniques were used.
For the first arbltrary initlal values for ¢y and T4 were supplied and the error
test was completely suppressed for the first step. For the second, the initial

‘1‘1 were computed based on a "compatible" selectlion of the initlal vy (as discussed
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in the preceding subsection). The initial step was taken suppressing the error
test on the vy. The first approach 1s certainly the simpler, but the second is
more reliable. After the first step, the error test was in effect for Ty but not
vy (regardless of the starting method). As 1t turned out, in these particular
examples the results were quite similar. As noted earlier vy(c,t) is singular

in the continuous solution. This singularity is also felt by the s (but 1less
strongly), and despite the suppression of the error test on vy, the relatively
large values of Ty restricted the bulld up of step size during the early stares
of the integration. Beyond this the integration behaved as expected.

Another case was run with ¢ = .4. The results were not essentially different
although the integration took somewhat longer due to the steeper initial spatial
derivatives (due to this checice of ¢). In all cases, the numerical solution agreed
satisfactorily with the exact solution (computed from the Fourier series).

Several different examples were tried with the full Burger's equaBion, (4.5)
with B = y # 0. For all these tests y = 1., and B was varied from 10" to 1.
The boundary conditions were T; = 1, Ty = 0. Expression (4.13) withc = .4 or
.475 was used for the initial Ty, and the initial v4 were computed from (4.10)
using a compatible value for vy (as discussed in the preceding section). Although
: the "correct" initial values for Ty could have been computed (since the initial
vq4 were compatible) this was not done. Note that in the nonlinear problem it
could be important to have good initial derivatives since the Newton process will
not necessarily converge in one iteration as in the purely diffusive case.
However, it is probably even more important to have the 1nitial v4 consistent
with the Initial Ty (which was done) which should help the Newton process converge.

In the numerical tests, it turned out that the B = y = 1 case was nearly the
same as the purely diffusive problem B = 1., y = 0. Although the vy changed very
rapidly for small t, there was no problem with the convergence of the Newton process.
For smaller values of B (maintaining y = 1.), the diffusive effect was weak and vi
did not undergo rapid initial changes. Plotted in Figure 4-2 are T-profiles for
various values of t for the B = 1077, y = 1. case.

There are several things to be noted from Figure 4-2. Because the diffusive
effects are so weak, the initial profile begins steepening almost immediately and
] after a short time assumes its "asymptotic" shape and from then on travels |
practically undistorted at a constant velocity. (Because of the finiteness of the i
right hand boundary this cannot, of course, go on indefinitely.) Another feature
to notice 1s the appearance of spurious oscillations in the trough of the wave.
Similar phenomena have been encountered by other workers. For example, in tre
calculations of Schwartz and Wendroff [13], using a different spatial discretizaszic:,
spurious oscillations appeared at the crest of the wave. They point out that from
theoretical considerations the asymptotic wavelength i1s 0(108) and if the spatial
mesh (here .025) is greater than this wavelength one should not be surprised at
such oscillations. When computations were made with larger values of B, these
oscillations became smaller and disappeared altogether. One run was made with a
steeper Initial profile (¢ = .475 in the definition of the initial Ty in (4.13)).
Because of the increased steepness of the initlal profile, the integration proceeded
somewhat more slowly than for the initial profile illustrated in Fipure U-2. Also,
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the spurious oscillations appeared sooner. However, the asymptotic behavior of
the solution seems to depend very little on the initial profile.

Although there are some exact solutions available for special initial
conditions (see Sincovec and Madsen [14] or Cole [15]), there does not appear
to be any corresponding to the initial conditions (4.13) used in this study.
Qualitatively, our results are in agreement with those of Schwartz and Wendroff
[13] and Sincovec and Madsen [14].

i
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V. ONE-DIMENSIONAL UNSTEADY GAS FLOW

A.  Introduction

In this section the application of the GEARIB integration method in conjunction
wlith the box method of spatlal discretization to a variety of one-dimensional
unsteady gas flow problems 1s discussed. Many of the numerical difficulties
encountered in the solution of these problems are also expected to be present in
realistic unsteady laser flows. Thus, the present work is a necessary first step
in the development of a comprehensive unsteady laser simulation program.

B. Governing Equations

In this subsection we 1list the governing partial differential equations for
one-dimensional unsteady gas flow. These equations contaln provisions for a variety
of different gas flow phenomena, e.g., heat and mass injection, wall friction,
dissipation, etc. All problems subsequently examined iIn this section are governed
by appropriate specializations of these partial differential equations. These
PDE's are also consistent (but with somewhat different notation) with the PDE's
coverning the quasi one-~dimensional steady laser flows used in the BLAZE-IT program
(Sentman, Subbiah, and Zelazny [17]). The equations listed here are more general
in the sense that they contain time dependent terms plus certain others, e.g.,
dissipation, heat conduction, etc., but are less general in that they do not :
provide for chemical reactions and radiation, which are essential to laser simula-
tions. The governing equations are listed below in the order; continuity, momentum,
energy, and gas law; with all unknown time derivatives appearing on the left.

3/ 9A _ ;i g . WP
10 0 0 (p (M - pu % PAl/A - p i 2 Bx
(u-u,, )M F -, Yy
01 3 ot lu _ug_lil___lg_?_______+p+_.N.+u B@_E.,.;L_'L)E
9X  p 9X pA phk = pl3 aX2 A 9y y
L
(H,~H)M 2
00 (<1/pc.) 1Kp) = - u g£'+ —g—-g£-+ g S 9 T —g—-g—g-
P (6] D P D DCp p D 3% |
u B |4 9u S0 Tu au,°
R R T I L o SB[l T ou
+ pcpA [(uM u)M + FN] + e, [3 (ax A f (ay) dy ’
: . IL
00 0 0\T p - pRT (5.1)

The notation employed in (5.1) is defined:

axlal coordinate

transverse coordinate (varies from yI to y”)
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0 density
u axial velocity
D pressure

]

temperature

duct cross-sectional area which 1is assumed to be a prescribed function of x
and t. (A could even depend on p, u, p, and/or T but then the form of (5.1)
would change according to the particular form of this relation. We do not
consider this here although there would be no difficulty in doing so.)

o>

M rate (per unit axlal length per unit time) of mass injection through the
duct wall

U, x—component of velocity of injected mass

y-component of velocity of injected mass

M
F body force (conservative)
EQI friction force (per unit axial length) at a non-slip wall. If Fy 1s included i
i the last term of the momentum equation (involving p 3u/dy) should be omitted.
This latter term is used for problems with partial slip boundaries for which
the friction force performs work. We do not consider partial slip boundaries
in this report, but they are important in the quasi-one-dimensional analysis
of the BLAZE-II program [17].
u coefficient of viscosity. Note the factor (4/3) multiplying u when applied to
the x-derivatives of u. For a careful discussion of this point see von Mises
(18], p. 136.
cy specific heat at constant pressure
H total enthalpy of fluld (= cpT + u2/2)
2 2
= + +
HM total enthalpy of injected mass ( CpTM uM/2 vM/B)
Q rate (per unit axial length per unit time) of heat addition through the duct
wall
k coefficient of thermal conductivity

e
o 9

gas constant




Bell Aerospace L12.411{e),

V-3

For the numerical results presented later in this section, the following
values were used:

(@]
I

= 1000. (joule/kilogram degree)

P

R = 286.7 (joule/kilogram degree)

u = various values (newton second/meterg)
k = 0

Also, using the formula, y = cp/(cp-R), we get y = 1.402

There are several points to observe regarding (5.1). The last terms of the
momentum and energy equations (involving derivatives of u with regard to y) would
not be present for strictly one-dimensional flow. However, it may be possible in
some situations to make realistic assumptions regarding the u-profile which would
allow reasonable approximations to these terms to be included in the solution.

In the BLAZE-II program, this is done for the term in momentum equation (but not
the dissipation term in the energy equation). No use of these terms is made in
the present study. They are included only for completeness. In the absence of
“he second derivative terms (32u/9x° in the momentum equation and 32T/3x2 1n the
energy equation) system (5.1) is hyperbolic. Inclusion of either of these second
lerivative terms makes the system parabolic. If 32u/3x2 1s omitted from the _momentum
equation, 1t is probably inconsistent to retain the dissipation term (3u/dx)¢ in
the energy equation. In (5.1), the gas law is used in its original form, rather
than using it to ellminate one of the thermodynamic variables as 1is often done.
This approach is used partially for simplicity of formulation and partially to
illustrate the flexibility of GEARIB in treating general differential-algebraic

systems.

Steady Gas Flow Problems

Perhaps the simplest gas flow problems to test GEARIB on are steady flow
problems. If all time derivatives are set to zero, (5.1) becomes a system of
ordinary differential equations gove ing sgeadv one-dimensional gas flow. Further,
if the axial diffusion terms, 9 u/ax and 3°T/3x° , are dropped (5.1) can be solved
as an initial value problem, i.e., if the state of the flow 1s specified at any
station the solution can be continued downstream in a step-by-step manner. To do
this, first rearrange (5.1) dropping all time derivatives and axial diffusion terms
and moving fh rpmaininv x-dgrivatives to the THS. (To be consistent with the

omission of 3°u/9x<, (du/dx)¢ 1s also dropped from the energy equation.) Further,
*uf not. necessary, asgunmtion are that the 3u/3y terms in the momentum and energy
~1u?tim?s are not present and that H = Hy. With this the steady flow specialization
oF Bk} I8
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low with p, u, p, and T specified at any station (p, p, and T must satisfy the
cas law) (5.2) can be integrated to obtaln the solution downstream. It is quite
possible that for arbitrary initlal conditions and forms of M, A, F, Fy, and Q
that no solution will exist. This becomes apparent during the integration when
the Mach number approaches unity and the derivatives grow untoundedly. Such
problems are always terminated by error conditions intermal to GEARIB. Even in
those problems for which passage through Mach one is legitimate, e.g., at the
throat of a Laval nozzle, attempts to solve by the initial value approach are

at best risky even if the upstream conditions are known, which is usually not the
ase.

A variety of steady flow cases were attempted. No case was run with the body
force term, oF, present in (5.2). However, each of the other terms on the RHS of
5.2) were present in at least some of these tests. For many of the test cases,

exact solutions are availlable.

In the first set of tests, the area was prescribed to be:

Ax) = 1+ R(I-x)°, (5.3)

where K i1s a positive constant. (5.3) 1s a convergent-divergent duct with its
throat at x=1. The integrations all began at x=0 using several different initial
conditions, both subsonic and supersonic. The integration proceeded rapidly except
in those cases where the flow choked, 1.e., reached Mach one before the throat.

For such choked flows, often many small Integration steps were taken in the
neighborhood of Mach one before GEARIB concluded that the step size was unacceptably
small.

The next set of tests was for a constant area duct with non-zero wall friction,

e

'v'” = - Kpl);", (5.4)

where K 1s a positive constant. This form for Fy was taken from p. 60 of
Oswatitsch [19], who also provides a corresponding exact solution. Different

-




e —

Bell Aerospace L12.41t(¢],

V-5

initial conditions, both subsonic and supersonic, and different values of K were
tested. For a long enough duct, the flow will approach Mach one from either a
supersonic or subsonic initial state. The larger the value of K the more auickly

Mach one will be reached. This was borne out by the numerical results which agreed

well with the exact solution of Oswatitsch. For those cases for which Mach one was
approached before the end of the duct, the integration broke down just as in the
rase of choked flow in a Lonvelgent—divergent duct.

The next set of tests were run with constant heat addition (Q = constant) in
a constant area duct. Agaln, there are exact solutions for this problem,
Oswatitsch [19], p. 68. The effect of heat addition is similar to that of wall
friction in that the flow tends toward Mach one regardless of whether the initial
onditions were subsonic or supersonic. This was observed in the numerical tests.
Acreement with the exact solution was good.

Another set of tests was run with a constant rate of mass addition (M = constant),
with Hy = H and uy = 0. The effect of mass addition 1s similar to that of friction
and heat addition, i.e., to always drive the flow toward Mach one. This was observed
in the numerical tests but we had no exact solutions for a precise comparison of
numerical results.

The final steady flow tests were with a convergent-divergent duct; the cross-
section again being given by (5.3). This time, however, the integration was
started from the throat (x=1.) with sonic conditions. The difficulty with this
problem i1s that specification of the four dependent variables at the throat is
not enough to uniquely determine the solution when the flow is sonic there. This
an be seen as follows: differentiate the last equation of (5.2) with respect to
% and move it to the IHS. It 1s possible to solve for the derivative vector only
if this modified matrix on the left does not have a vanishing determinant. It is
stralghtforward to evaluate this determinant to be,

det = p?‘u[(R-cp)u2 + chT] (5.5)

Using the relations R = (c_-c.) and c = (y=1)c_T (c 1s the speed of sound), it
can be seen that the deterﬁingnt vanishes when Pu=c. In this case, it 1s possible
to obtaln solutions for the derivative vector only if the RHS of the modified form
" (5.2) vanishes, which it does for the case currently under consideration. Now
if one of the derivatives is specified, it is possible to solve for the other
three from (5.2). However, this first derivative cannot be selected arbitrarily.
swatitseh [19], p. 52 shows how to obtain du/dx at the throat by evaluating an
iraeterminate form. The result is

2
du _ gc [ A _d°A
dx T TaAAY 20 S
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where the plus slgn corresponds to supersonic flow in the expanding section of

the duct, the minus sign corresponds to subsonic, and ¢ is again the speed of sound.
Since the A we have been considering is in analytical form (5.3), it is easy to use
(5.6) to get du/dx and then (5.2) to get the other derivatives.

Why are these considerations important? Suppose one attempted to start the
GEARIB integration by selecting the initial derivatives arbitrarily and taking a
very small Initial step. Even 1f this were successful, it would be a matter of
hance which branch of the solution (supersonic or subsonic) were followed.
However, there is doubt whether the integration would get started at all. The
lewton matrix (computed by GEARIB) becomes singular at the throat for the same
wason the derivative matrix is singular. For a very small initial step (necessary
pecause of the arbitrarily selected initial derivatives), the Newton matrix is
nearly singular and the Newton iterations may not converge, which means that the
integration cannot get started at all.

By using formulas (5.6) and (5.3) to compute the correct values of the initial

derivatives, 1t was possible to take a moderate sized initial step along elther the
subsonic or supersonic branch and the integration proceeded without difficulty.

D.  Hyperbolic Unsteady One-Dimensional Gas Flow Problems

2
and Q‘T/axg, in (5.1) are omitted the gas flow problem becomes hyperbolic. For
such gas flow problems, there is an extensive literature applying to both the
analytical side of the problem, e.g., Courant and Friedrichs [20], and to its
nurerical aspects, e.g., Richtmyer and Morton [11]. The great majority of numerical
methods in use for these hyperbolic problems employ methods which are effectively
explicit for the marching (in time) phase of the solution. Explicit marching is
cenerally satisfactory since these hyperbolic systems are usually not stiff.
However, if axlal diffuslon terms are present, the system becomes parabolic and
possibly stiff (depending on the magnitude of the diffusion coefficients) and
explicit marching methods may be inefficient. (Flows containing axial diffusion
effects are considered in Section V.E.) Even more important than axial diffusion
from the standpoint of laser simulations is the presence of chemical reactions.
Jeneralization of (5.1) to Include finite rate chemistry would render the system
very stiff (but still hyperbolic) and the use of implicit marching methods are
practically mandatory. It 1s with a view to the future treatment of reacting gas
flows that we have concentrated our attention on implicit integration methods (as
in GEARIB).

2
As noted previously in this section, if the axial diffusion terms, 3 u/dx

The spatial differencing scheme used to reduce (5.1) to a system of ordinary
i1fferential equations 1s again the box scheme, i.e., each of the PDE's is
written at the midpoint of each mesh interval by approximating each term of the
PDE in terms of quantities (dependent variables and prescribed functions)
corresponding to the endpoints of the mesh interval. Just as with Burger's
equation (discussed in Section IV.C) mesh nonuniformity does not complicate this
spatial differencing process.
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One question of crucial importance regarding system (5.1) and its spatially
discretized counterpart 1is the question of the allocation of boundary conditions.
Since we are not considering axial diffusion terms presently, system (5.1) contains
only first derivative terms with respect to x, and so we expect that it will be
necessary to prescribe three boundary conditions. In the case of strictly super-
sonic flow, no downstream information can be propagated upstream. Consequently,
no downstream boundary condition can have any effect on the flow, and sc all fhvee

boundary conditions are imposed at the upstream boundary. On the other hand, for
"Tpiltly subsgnic flow, a characteristic analysis of (5.1) (omitting, of course,
32u/9x2 and 3°T/8x¢) shows that one of the three characteristic directions runs

upstream, which leads to the conclusion that two boundary conditions should be
imposed upstream and one downstream. In (5.7), the spatially discretized form of
(5.1) is shown for subsonic flow.

As before, H;y 1s the width of the ith mesh interval. In forming (5.7) from
(5.1), terms contawnlng the viscous effects have been dropped in addition to 9 u/axe,
the body force term F has been omitted, and it has been assumed that uy = u and
M = H, which results in the disappearance of other terms. These assumptions are
not necessary but have been used for all the numerical tests during this study.
Before forming (5.7), we have (for simplicity) replaced (gau/Bx + u3dp/3x) by
9(pu)/3x in the continuity ecguation and u au/9x by 1/23(uc)/9x in the momentum
equat ton.  There are other terms in (5.7) which could have been approximated in
another way with equal order of accuracy, i.e., it 1s often a question of whether
to replace a product term from (5.1) by the average of the product or the product
of the average. Further, if a function is prescribed continuously, it may be
simpler to replace an average by its known mid-interval value, e.g., (M + Mo)/
(Al + A?) from the continuity equation (written for the first mesh interval) could

instead be Ml/ /A 12" The decision how to handle such terms is usually a matter
of convenience - and efficiency, since comparable accuracy is attained with
any of the various forms.

H
gt

IR 5 1) g1 €55 and F are the boundary condition functions. As shown they
are qulte generdal. In most of our tests they are usually specialized to a
condition that a dependent variable at the end take on a prescribed constant or
somet imes a time dependent function. However, for one example, the downstream
boundary condition (at the throat of a convergent duct) was that the flow become
sonic at a 'ertain time. In this case, the function gy of (5.7) was a nonlinear
function of uy, Ty, and t. As noted previously, for strictly supersonic flow, all
boundary nonditions must be Imposed at the upstream end, which means that the last
equation of (5.7) should be moved to the third row and al] the others (except the
first and second) should be shifted down. The problem of mixed supersonic-subsonic
flows 1s much more complicated, and will not be considered here. However, in
Section V.E it will be shown how such problems can be treated by the introduction
of viscosity, which converts the hyperbolic problem to a parabolic problem. Also,
in the second year of this study, the supersonic-subsonic problem will be examined
using a purely hyperbolic system of governing partial differential equations.
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A1l of the test cases run with system (5.7) used a uniform mesh and the total
number of mesh polnts was 25, making a total of 100 problem unknowns. The first
set of tests was for strictly supersonic flow in a constant area duct. The problem
was made unsteady by superposing a sinusoidal velocity perturbation on the untiform
veloclty that would occur in steady flow for the prescribed boundary conditions.
Perturbations of several magnitudes, but all satisfying the velocity boundaryv
conditions, were used. Because the flow was supersonic, the perturbations eventually
iisappeared out of the downstream end of the duct and uniform flow, consistent with
the upstream boundary conditions, was realized.

Next a similar set of tests was run with a convergent duct. The initial
onditions were obtained by integrating the steady state equations (5.2) subject
o the prescribed upstream boundary conditions using GEARIB. A sinusoidal velocity
rerturbation was superposed on thils steady state velocity profile. Again the
perturbat ion eventually passed out of the downstream end of the duct and the steady
state solution was assumed (to within the accuracy of the spatial discretizarion
Uf‘ (%.7),\.

For the next test (still strictly supersonic), the initial condition was
uniform flow In a constant area duct. The area function was then varied smoothly
in time (0 < t < 1) to a convergent duct. Shortly after t=1, the expected steady
state solution appeared (to within the spatial discretization error).

The next set of tests was for strictly supersonic flow in a constant area
duct. Three tests were made. In all cases, the initial condition was uniform flow.
For the first test uniform heat addition was introduced for t>0. For the second
uniform mass addition was introduced for t>0. For the third wall friction was
specified for t>0 according to the formula (5.4). In none of these tests was the
strength of the heat or mass addition or the friction great enough to cause Mach
one to be reached before the end of the duct. In all cases, the integration
proceeded smoothly and the expected steady state solution (obtained by integrating
the steady flow equations (5.2)) was obtained.

The remaining tests were made for strictly subsonic flow. Recall that one
boundary condition is now imposed at the downstream end of the duct. If all
boundary conditions were prescribed arbitrarily, it would be more difficult to
obtain a steady state check case since the steady state equations (5.2) would have
to be solved as a two-point boundary value problem instead of as an initial value
rroblem. To avold this, a steady state subsonic flow was obtained by prescribing
three upstream conditions and then integrating (5.2) downstream. The downstream
boundary condition for the unsteady problem was then obtained from this steadv
flow solution. (Of course, one of the three upstream conditions would be discarded.)

For the first test case, the initial condition was uniform flow in a constant
area duct. The two upstream conditions were constant values of pressure and
Iniform mass addition was introduced for t>0. Also, for t>0 the
.~vristream pressure began to vary smoothly from its uniform flow value to the known
iweady flow value (as explained in the preceding paragraph). Because the flow is

DS St I S
TiollY «

subsonic, it takes longer than the analogous supersonic case for a steady state
to be reached. Eventually, it was reached with the expected accuracy.
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For the next case, the initial condition was steady flow in a convergent
duct with a throat at the downstream end. pjy and pj were prescribed to be constant
at the upstream end. At the throat, uy was specified to make a smooth transition
in time from its initial condition value to sonic value at t = .005. The sonic
condition can be written,

g = ¥-Dedy ol

The integration went smoothly as GEARIB had no difficulty handling this boundarv
condition. There was no steady steady check, but the solution did seem plausible

nd sonic conditions were realized at the throat to at least nine significant figures.

For the final test, an attempt was made to solve a subsonic flow problem in
a convergent-divergent duct having sonic conditions at the throat. Unlike \he
problem described in the preceding paragraph, the boundary condition to be applied
at the downstream end in order to obtaln sonic conditions at the throat is unknown.
The approach taken was this. The steady state equations were integrated downstream
from the throat taking the initial conditions for this integration from the solution
of the preceding problem. The downstream pressure boundary condition for the
nsteady problem was then obtained from this solution to the steady state eauations.

The initlal condition for the unsteady problem was a strictly subsonic flow
obtained by integrating the steady flow equations subject to the prescribed values
>f p7 and py and to a value of uj less than that which would produce sonic
onditions at the throat. With this initial condition, py was varied smoothly in
time from its initial condiLion to the value which should produce sonic conditions
a* e throat. The integration proceeded smoothly until well after py had reached
i inal value. The solution had almost reached steady state when the velocity
bec.rie slightly supersonic at the throat. After that the numerical solution began
to biow-up. Once the flowfield becomes partially subsonic and partially super-
sonie, it is not surprising that this should occur since the numerical technique
belng used is not deslgned to handle such situations. Why the solution became
supersonic in the first place is not clear. Tt could easily be due to a truncation
error in the numerical solution. It might also be a true physical effect. In any
ase, this test demonstrates the perils of attempting to solve mixed subsonic-
supersonic flows using straightforward methods.

t.  Parabollc Unsteady One-Dimensional Gas Flow Problems

In this section, we consider several gas flow problems for which an axial
diffusion *(rw is Rresent in the governing system (5.1). The diffusion te
included 1is f‘u/ax from the momvnhun'nninlth (To be consistent (3u/3x)c is also
r=taired in the energy equation.) The 3 2T /9x° 1grm From the energy equation could
rave been retained instead, or in addition to, 3 u/3xe. However, for simplicity
it was decided to keep on]v one of 1h~ﬁp di‘ru(i(wl* erms. If only one is to he
kept then it probably should be 3% /9% sinece viscosity has a more important
Influence on the effects WP}KWt"Ulﬂ.nTV“,5.“.,1}W transition from supersontie
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to subsonic flow, than does heat conduction. See Richtmyer and Morton [11],

p. 311 ff. for some discussion of this point. Even when both viscous and heat
conduction effects are included it is known that the corresponding solutions cannot
be valid within shocks, since the continuum assumption is not a good approximation
in such narrow regions of rapid transition. See von Mises [18], p. 142 ff.,
Oswatitsch [19], p. 550, and Courant-Friedrichs [20], p. 137 for discussion.
Despite this shortcoming, the inclusion of viscous effects is at least a convenient
numerical device to make downstream changes have an effect upstream in supersonic
flow and to obtain the transition from supersonic to subsonic flow, and at best
also gives a good approximation to reality outside the shock.

To maintain the convenience and flexibility of the box method, the 32u/3x2
“erm cannot be replaced by a 3-point divided difference formula and then be
‘riserted into the appropriate equations of the differential system (5.7). Instead
the device already employed in the treatment of Burger's equation is used, i.e., define

u

Ny (5.9)

v =

Now replace 3u/d9x by v and 32u/8x2 by 9v/dx on the RHS of (5.1), and approximate
the partial differential equations at the mid-point of each mesh interval just as
was done to obtain (5.7). Of course, there is now an additional dependent
variable, vy, at each node and for each interval an additional eaquation, the
discretized form of (5.9),

_ . - o (510
0 = (\i + vi+1)/2 (ui+1 ui)/Hi (5.10

To obtain a tight band structure for the Newton matrix that is computed by GEARIB,
vy 1s inserted between uy and py in the dependent variable vector of (5.7), and
(5.10) is Inserted between the continuity and momentum equations of (5.7) (written
for the i-th interval).

In going from (5.7) to the augmented system containing the effects of viscosity,
N unknowns (the vi) have been added but only N-1 new equations ((5.10) for each of
the W—]Hintervals% have been written. Because of the presence of the 2nd derlvative
Term, 34;/339, in the governing partial differential system (5.1), we expect that
zdditional boundary condition will be required. The only questlion is whether

.\

mitially, a variety of simple problems were attempted with two boundary conditions
mrosed upstream and two downstream. All of these attempts failed, the computed
~lution growing unbounded or at least continuing to deviate from its known steady
state solution. This occurred with both purely supersonic and purely subsonic
tnitial conditions which were only slight perturbations of the known steady state
solution, and with a variety of combinations of boundary conditions. Based on these
numerical experiments, it was concluded that for the problem to be properly posed,
it 1s necessary to impose three boundary conditions upstream and one downstream
regardless of whether the flow is supersonic, subsonic, or mixed. There appears to
be very 11ttle puldance in the Titerature as to the appropriate boundary cond L Yonn

U e
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f'or one~-dimensional gas flow with viscosity. For example, Benison and Rubin [21]
solve such problems for ducts of variable cross section (including also the effects

of thermal conductivity) by explicit marching methods. If one is not interested in
details of the flow near the ends of the duct, e.g., if the =nds are in regions of
uniform flow, then 1t 1s possible to be rather loose about ti specification of
boundary conditions if implicit methods are being used. Benison and Rubin effectively
overspecify the number of boundary conditions in order to facilitate the use of their
explicit method. When using some implicit methods with purely hyperbolic problems
such an overspecification of boundary conditions is sometimes necessary. It is a
subject of some controversy how seriously this affects the solution within the
region of interest. See Mitchell [22], p. 167 ff. for some discussion. Similar
1ifficulties arise when explicit methods are used for hyperbolic problems. See
Kreiss [23] for a detailed discussion of this problem. Ludford, Polachek, and
Seeger [24] and Moretti and Salas [25] solve one-dimensional viscous flow problems
made unsteady by the motion of a piston at one boundary. Both papers use explicit
methods. Ludford et. al. deal with the boundary condition question bv effectivelv
formulating the problem in Lagrangean variables and using a staggered erid, which
juires them to specify only the values of the velocity on the boundaries.
Moretti and Salas resort to overspecification of the boundary conditions.

The first unsteady viscous problem attempted was flow in a constant area duct
which 1s initially uniform supersonic. The single downstream boundary condition
(usually pressure for our tests) was altered smoothly in time so that the flow near
the downstream end would become subsonic. (At the upstream boundary, the flow
remained supersonic because of the three boundary conditions imposed which were
neld constant for our tests.) If the final value of the downstream boundary
rondition 1s "just right" then the steady state solution will approach uniform
supersonic flow upstream and uniform subsonic flow downstream with a rather rapid
transition from supersonic to subsonic somewhere in the interior. The width of
this transition decreases with the viscosity and can be thought of as simulating
a shock for small viscosity. The corresponding steady flow problem is discussed
in detail in von Mises [18], p. 139 ff., who also supplies an exact solution (in
implicit form). This exact steady solution was built into our unsteady flow
program for two purposes: (1) to supply the downstream boundary condition appropriate
to the prescribed upstream conditions so that uniform flow upstream and downstream
would be realized as the unsteady solution approached steady conditions, (2) to
provide a steady state check for the unsteady solution.

Before actually attempting the problem described in the preceding paragraph,
a series of tests were made using as the initlal condition a perturbation of the
exact steady flow solution (uniform supersonic upstream and uniform subsonic
downstream). The single downstream condition was specified in several ways. If
PNs Uys PNs Or Ty were prescribed (equal to their steady flow value), the perturba-
tion died out rapidly, as expected, and the exact steady solution was obtained (to
within the truncation error of the spatial discretization). However, when

v. ts 9l

'N VT A
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solution, even for very small initial perturbations. Several further tests were

) was prescribed, the solutlion departed more and more from the steady
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performed with v prescribed at the downstream boundary. For these tests, the
solution was attempted over subintervals of the original x-interval:; some tests

were for a strictly supersonic interval, some for strictly subsonic, and some for
mixed supersonic-subsonic. The initial conditions and boundary conditions were
again taken from the exact steady flow solution. Of course, the boundary conditions
do not necessarily correspond to uniform flow since only a portion of the original
x—interval is being considered. For an x-interval corresponding to strictly
supersonic flow, the unsteady solution returned to the exact steady flow solution
after an initial perturbation. For an x-interval that was primarily supersonic

but with a subsonic portion downstream, the unsteady sclution would depart from

the initial steady flow solution (even with no perturbation) and it would eventually
approach another quite different strictly supersonic steady flow solution, the
significance of which was not clear. For strictly subsonic initial conditions,

the unsteady solution would depart from the initial conditions with ever increasing
svatial gradients and gave no indication that it would eventually reach a steady '
state. Although the significance of these experiments with vi prescribed downstream

is unclear, 1t 1is apparent that it is dangerous to prescribe v to be a boundary
condition. Such boundary conditions were not employed in the remainder of our
numerical tests.

We now discuss the unsteady viscous flow problem of interest. For this
problem, the initial condition was uniform supersonic flow (Mach 1.4). Starting
at t=0, the downstream pressure was increased smoothly in time from its uniform
flow value to its final value at t=.1. (Recall that this value is taken from the
exact steady flow solution having uniform supersonic flow upstream and uniform
subsonic flow downstream.) This problem was run for three different values of
the viscosity. In Figure 5.1, u-profiles corresponding to the smallest value of
the viscosity (u = 14.7) are plotted for various times. For these numerical tests,
the x interval was [0,1] which was divided into 80 equally spaced intervals.
There are five unknowns per mesh point making a total of 405 dependent variables
that were integrated. 1In Figure 5.1, the profile labeled "t==" is taken from the
exact steady flow solution. ''he last profile actually obtailned from the unsteady
tntegration is for t = 2.4. Conditions are still slowly changing at t = 2.4,
but it seems doubtful whether the unsteady integration would ever reach the
"t=w" profile. The reason is that the position of the rapid transition is not
well defined, especially for small values of u. The shape of the profile is well
defined, and it can be seen that the t = 2.4 and t=« profiles are practically
translates of each other. For larger values of u the position is better defined.
Por numerical tests with p = 23.1 and y = 34.6, the unsteady solution came much
~loser to the exact steady solution. The reason for this type of behavior is
that the exact solution attains uniform conditions only at x = e, and any finite
translate of such an exact solution 1s also an exact solution. For our purposes,
we have chosen the exact steady solution which undergoes the rapid transition
“rcm surersonic to subsonic near x = .5. Now the x derivatives of this solution
zra firtte gt x=0 and 1., but they decrease with y. Thus, for the smaller values

® u, the conditions at x=0 and 1. more closely resemble uniform flow, which means
“hat there is a group of translates of the exact steady flow solution which comes
very close to satlsfying the equations we are integrating along with the boundary
onditions at x=0 and 1.
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Had we attempted the solution of such a problem in a duct of variable cross-
section, e.g., the convergent-divergent duct used by BRenison and Rubin [ 1, we
would expect the position of the rapid transition to be well defined resardless
of the value of p since the limiting inviscid solution, i.e., the shock, muat
oceur at a definite location in order that all boundary conditions be satistied.
For our next group of tests, the flow also takes place in a duct of constamt
cross section, but for some of these runs a special type of nonuniform heat input
distribution (Q in system (5.1)) seemed to force the rapid transition to occur
about a more clearly defined position in the duct.

The first of the tests with heat input used a Q which was constant in space
but varied smoothly in time starting with Q = 0. at £ = 0. The prescribed time
iependence of Q was such that 80% of its final "steady" rate occurred by t = .02,
and by £t = .1. Q was constant for practical purposes. The 1nitial conditio
uniform supersonic flow. In addition to the time dependent Q, the downstrear
rressure, py, which increased smoothly from its uniform flow value at t = 0t
its final value at t = .1, contributed to the unsteadiness of the problem.

Beyond t = .1, the external "driving forces" ceased to have an unsteadyinge effect,
and the flow proceeded toward its asymptotlc steady state. For the first set of
s, the initial condition was uniform supersonic flow and the final value

oy was the same as that used for the runs without heat addition, i.e., that
value which would produce uniform supersonic flow upstream and uniform subsonic
flow downstream in the absence of heat addition. Several different values of
viscosity and strengths of the heat additlon rate were tried. Plgtted in
Meure 5.2 are u-profiles for a typical case: u = 14.7 and Q = 10 te/(t2 +
Except for the heat addition, this case is identical to that of Figure 5.1.
Unlike the case of Fipure 5.1, which is very slow to reach its steadv state (because
it is poorly defined ~ as discussed earlier), the presence of heat addition causes
the steady state to be reached very quickly. Of course, the upstream and down-
stream steady state flows are no longer uniform. (Uniform flow is not possible

in regions of the duct where there is heat addition.) As is clear from Figure 5.2,
for steady state the transition from supersonic to subsonic flow is made near the
upstream end of the duct. For most of the rest of the duct, the velocity increases
early linearly, which means that the viscosity has little effect in the momentum
guation of system (5.1). Viscosity will have some influence on the energy

equation through the dissipation term, but this 1s rather small. Thus, over most

of the duct the flow is very similar to an inviscid flow with heat addition.
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In order to obtain uniform flow conditions near the ends of the duct and
also to ensure a well defined location of the rapid transition through Mach one,
the heat addition distribution illustrated in Fieure 5.3 was used for the next
series of tests.

Figure 5.3 Nonuniform Heat Addition Distribution

The Q-profile illustrated represents the steady state heat addition rate.
Before Q reaches its steady state value, the distribution in x is similar but
with a smaller peak value. The peak value, o, is chosen to demonstrate particular
types of' flow features, which are discussed in detail in the following paragraphs.

For inviscld steady flow with heat addition it 1s possible, for prescribed
upstream conditions, to integrate the steady flow equations (5.2) downstream.
In this way any continuous steady flow can be obtained. (As discussed in Section V.C,
if the heat addition rate i1s too large, the flow will approach Mach one from either 1
a supersonic or subsonic Initial state, at which point the integration will break
down, 1.e., no continuous solutions exist for the prescribed upstream boundary
conditions and heat addition rate.) TFor constant area ducts, it is not necessary
to integrate the steady flow equations numerically. An analytical solution is
provided by Oswatitsch [19], p. 68, which reauires only that the prescribed Q(x) be
3 integrated, and this 1s especially easy for the distribution we are using (Figure
5.3). Thus, all continuous solutions to the inviscid steady flow problem with
heat addition 1n a constant area duct are easily obtained.

Corresponding to a uniform upstream flow, there are two possible uniform
downstream flows following a section of the duct over which heat is added. One
i1s the continuous solution discussed in the preceding paraeraph, which does not
pass through Mach one. The other solution contains a shock, i.e., it passes
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through Mach one. The position of this shock is arbitrary, which means that it is
no longer possible to give details of the flow within the region of heat addition,
unless the shock location is somehow specified. There are, however, simple
formulas for the uniform downstream flow, Oswatitsch [19], p. 68. For given
uniform upstream conditions, these formulas were used to obtain the downstream
pressure, py, for use as a boundary condition in the viscous flow problem. Just
as in the viscous flow problems without heat addition the initial condition was
uniform flow, and py was varled smoothly from its initial value to this value
obtained from the inviscid flow solution. Before giving details of the various
viscous flow tests with the heat addition distribution of Figure 5.3, it 1is useful
to discuss the generalized Rankine-Hugoniot curve. This curve 1is helpful in
categorizing the numerical tests that have been made. Additional discussion of
thls curve can be found in Oswatitsch [19], p. 71 ff. and Courant-Friedrichs [20],
p. 210 ff. For a duct of constant cross section with a region of heat addition,

1/01 Vo

Meure H.0 Rankine=Hurontot Curve for Heat Addit ion
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the generalized Rankine-Hugoniot curve shows what downstream densities and pressures
(0,p) are consistent with the corresponding upstream quantities (py, pj). The
extent to which the curve is translated from the point (1/01, p1) Is proportional

X,
N

to the amount added heat per unit mass, i.e., (l/plul)J Q(x)dx. For no heat
i

addition, the curve would reduce to the usual Rankine-Hugoniot curve and would
pass through (1/p , 1.e., the downstream pressure and density can be identical
to' the oorrespond%nv upgtream quantities. Of course, p; and p; do not completely
ietermine the flow; one must specify the upstream velocity, uj, also. Eliminating
the downstream velocity, u, from the continuity and momentum ecuations (written

"or the section of the flow extending across the entire region of heat addition’
znother (1/p, p) relation (depending on the prescribed values pq, py, and ) ean
v2 cbrained. It turns out that this is a linear relation passing through the
voint (1/04, pq) with a negative slope proportional to -u?. This linear relation
ts plotted in Figure 5.4 for several values of u;. The intersection points

(marked by heavy dots) represent the downstream values of density and vressure that
are possible for the given upstream state (ul, P15 pl) corresponding to the
prescribed heat addition rate. There are either two, one, or no 1ntersectﬂon
points (depending on uj). The intersection points to the rlght of (1/pq, 07)
correspond to subsonlc upstream flows and those to the left correspond to supersonic
upstream flows. The six intersection points shown in Figure 5.4 can be categorized
as follows:

A - supersonic upstream, subsonic downstream (strong detonation)

B - supersonic upstream, sonic downstream (Chapman-Jouguet detonation)
C - supersonic upstream, supersonic downstream (weak detonation)

D - subsonic upstream, subsonic downstream (weak deflagration)

E - subsonic upstream, sonic downstream (Chapman-Jouguet deflagration)
F - subsonic upstream, supersonic downstream (strong deflagration)

For given upstream conditions, the straight line relation of Figure 5.4 is
completely determined. Then if the heat addition rate is large enough, the
Rankine-Hugoniot curve will be translated far enough from the point (1/py, pj) so
that there can be no intersection point. This is a geometric illustration of
the earlier discussion that a solution may not exist for arbitrary upstream
conditions and heat addition rates.

The downstream states corresponding to points B, C, D, and E do not represent
agsagse through Mach one, i.e., they are continuous solufionq and could be
s‘:Innd by integrating 1hv one=dimensional steady flow cauations. Point A ia

a generalization of the usual normal shoek, 1.0.4 a discont lnuous transition Freom
supersonic to subsonte fflow. On the olher hand, point I corresponds to o
discontInuous transit.fon from subsonic to supersonte tflow, 1.o., a rarefact ton
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shock, which, in the absence of heat addition, would violate the second law of
thermodynamics. However, if the entropy increase due to heat addition is large
enough to compensate for the entropy decrease due to the rarefaction, F could be
a legitimate solution.

In our numerical work tests were made corresponding to each of points A, B,
C, D, E, and F of Figure 5.4. These six tests were all run for the same Rankine-
Hugonlot curve. To accomplish this pq, Dy and the neat addition rate per unit
mass were identical for all runs. Then to obtain the various cases, uj;, was
varied and the corresponding downstream pressure was computed from the inviscid
solution and used as the downstream boundary condition, Diy» in the viscous
solution. (Note that it is necessary to vary Q(x) proportionally to uy; to main-
tain the same heat addition rate per unit mass.) In all cases, the initial
ondition was uniform flow and the heat addition rate and p)y were varied smoothly
in time so that thelr steady values would be attained by t = .1 (exactly for ONs
approximately for the heat addition). Unless otherwise noted, all cases were run
with p = 14.7 and 40 equal mesh intervals between x = 0. and x = 1. Thus, there
are 205 unknowns to be determined at each step of the integration.

Plotted in Figure 5.5 are velocity profiles for various times for the case
of Chapman-Jouguet detonation, point B on the Rankine-Hugoniot curve of Figure 5.4.
At steady state, the flow is uniform both upstream and downstream. Also plotted
is the steady inviscid solution computed from the formulas of Oswatitsch, which
illustrates the effect of viscosity. Similar runs were also made for strong and
weak detonations, points A can C on the Rankine-Hugoniot curve. The results had
the same character as those of Figure 5.5 and so have not been plotted. Perhaps
the most important distinction among the three cases was the time required to
reach steady conditions. The.strong detonation case took by far the longest time
with Chapman-Jouguet detonation next.

In Figure 5.6 are plotted u-profiles for various values of t and also the
steady state temperature profile for Chapman-Jouguet deflagration, point E of
Meure 5,4, At steady state the downstream flow conditions are not uniform, and
there i1s also a small jump at the upstream end. However, the values of py, uy,
my, and Ty agree with thelr inviscid counterparts to at least three figures. The
total entropy change (which depends only on py, py, Py, and py) differs by less
than 17 from the corresponding inviscid change. Although viscous dissipation
onsrihutes to the entropy increase, it can be seen from Fipure 5.6 that the
w237 fs added at a higher temperature in the viscous case. Thls means that the

nrrory increase due to heat addition is less in the viscous case, which partially
campensates for the entropy increase due to dissipation. Tf truly uniform
onditions are attained downstream then the viscous entropy change is identical
to that of the corresponding inviscid flow. (This was true for the detonation
ases discussed in the preceding paragraph. )

In an attempt to obtain uniform flow upstream and downstream for Chapman-
Jouguet deflagration several things were tried:
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1) The mesh size was halved (approximately doubling the number of unknowns).
This had practically no effect on the solution. !

11) The length of the x-interval was increased to [-.5, 1.5] maintaining
the original mesh size. The upstream and downstream flows were closer
to being uniform, but still not as good as the detonation cases.

i11i) The viscosity was reduced maintaining the original x-interval and mesh
size. With u = 1 (instead of 14.7), steady conditions were more nearly
uniform upstream and downstream, but again still not as good as in the
detonation cases. The entropy change differed from the inviscid
entropy change in the fifth figure. From a numerical standpoint, this
case was more difficult than the corresponding p = 14.7 case. During
early stages of the integration, moderately high freauency oscillations,
(probably spurious) appeared in the solution, which resulted in GEARIB
taking small steps until these oscillations died out.

A test was run for weak deflagration, point D, in Figure 5.4. Uniform flow
was attained quite well both unsfream and downstream. There are no particular
features of this run that are noteworthy, so the results have not been vlotted.

The final plot, Figure 5.7, is for strong deflagration, point F in Figure 5.4.
It is clear that uniform conditions are not even close to being realized,
especlally downstream. The steady state values of pyn, uy, and Ty disagreed with
the corresponding inviscid values by one or two percent. The total entropy increase
was off by about 10%. No attempts were made to obtain uniform upstream and down-
stream flow by reducing the viscosity or lengthening the x-interval. Based on
the numerical work with Chapman-Jouguet deflagration, these "tricks" did not seem
promising in view of the more difficult behavior of this problem. Even if there
were no numerical problems to overcome, it may be that no amount of viscosity
reduction or interval lengthening could produce the desired results. Although
the inviscid solution that we were trying to approximate satisfies continuity,
momentum, and energy balance plus the second law of thermodynamics, Courant-
riedrichs [20], p. 228 ff., argue that this case 1s physically impossible, and
possibly the unexpected behavior of the viscous solution is a reflection of this
fact?

It should be emphasized that in the plots of u-profiles presented in this
section, the unsteady profiles are strongly dependent on the rather arbitrary time
dependence that was assigned to and the heat addition rate in order to get from
thelr initial values to the steady state values. Other time dependencies could
have been selected. 1In this regard, one precaution should be observed: the time
dependencies should be smooth as possible. If there are discontinuities in the
time function or its derivatives, GEARIB may have some difficuity in getting past
the discontinulty, especially if 1t i1s operating with a high order method at the
time it encounters the discontinuity. For example, the prescribed time dependency
of py had a discontinuity in its second derivative at t = .1 (the point at which
Dy reached its steady state value). Even this mild discontinuity caused GFARIRE
some difficulty. For stronger discontinuities, the proper approach is to integrate
right to the point of discontinuity (assuming it is known in advance), and then
restart “he integration from this point incorporating the discontinuous change.
This *s readily accomplished within the framework of GEARIB.
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Apart from the discontinuity difficulty discussed in the preceding paragraph,
the only other problem with GEARIB was in starting. Recall that in the viscous
problem, it was necessary to prescribe three boundary conditions upstream and one
downstream. By applylng the gas law at mesh point 1, u,, P1s P1s and Ty are fixed
<V1 is free). It turns out that unless vy is prescribed downstream, the Newton
matrix is singular as h»>0. If the algebraic equations of the governing system
are differentiated with respect to t and moved to the LHS, then this matrix equation
can be solved for the derivative vector only if vy 1s prescribed. As noted early
in this subsection, it was not possible to obtain reasonable solutions with this
lownstream boundary condition. TInstead for most of our tests p,, was prescribed,
legding to a singular derivative matrix and, for small h, a poorly conditioned
Ylewton matrix. This same problem arose in our treatment of Bureger's equation in
‘ection IV.C.1, and a detailed analysis of this situation was given there,
including possible remedies. One of which was the selection of initial conditions
30 that the RHS of the differential system would be consistent with the LHS and a
solution for the initial derivatives could be obtained (by a special formula) inspite
of the singular matrix on the left. Because of the more complicated system beings
used for the viscous flow problem, this approach was deemed impractical.

The starting technique actually used was the following: A moderately small
inftial step size was chosen. GEARIB was modified so that the first ten steps
would be performed with this same step size. All error and convergence testing
was suppressed for these first ten steps. Also, only one Newton iteration was
used per step and the Newton matrix was updated before each iteration. After the
tenth step, GEARIB began operating in its accustomed mode. 1In all cases, this
starting technique was successful.




Bell Aerospace 124110},

VI. RECOMMENDATIONS

1. Examine the potential in computer time savings by using sparse matrix techniaues
in conjunction with implicit integration methods to improve the efficiency of
three-dimensional parabolic flow calculations.

2. Continue development of the unsteady auasi two-dimensional mixing, reactine,
lasing flow eguation system.

Exercise the unsteady flow analysis to examine laser start transient effects and
shock wave formation in low diluent-low pressure laser applications.

w
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Problems, 2nd Ed., Interscience, 1967.
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